Call-by-name extensionality and confluence
نویسندگان
چکیده
Designing rewriting systems that respect functional extensionality for call-by-name languages with effects turns out to be surprisingly challenging. Simply interpreting extensional laws like η as reduction rules easily breaks confluence. We explore these issues in the setting of a sequent calculus. Building on an insight that appears in different aspects of the theory of call-by-name functional languages—confluent rewriting for two independent control calculi and sound continuation-passing style transformations—we give a confluent reduction system for lazy extensional functions. Finally, we consider limitations to this approach when used for strict evaluation and types beyond functions.
منابع مشابه
A solution to Curry and Hindley's problem on combinatory strong reduction
It has often been remarked that the metatheory of strong reduction , the combinatory analogue of βη-reduction βη in λ -calculus, is rather complicated. In particular, although the confluence of is an easy consequence of βη being confluent, no direct proof of this fact is known. Curry and Hindley’s problem, dating back to 1958, asks for a self-contained proof of the confluence of , one which mak...
متن کاملConfluence Properties of Extensional and Non-Extensional λ-Calculi with Explicit Substitutions
This paper studies confluence properties of extensional and non-extensional λ-calculi with explicit substitutions, where extensionality is interpreted by η-expansion. For that, we propose a general scheme for explicit substitutions which describes those abstract properties that are sufficient to guarantee confluence. Our general scheme makes it possible to treat at the same time many well-known...
متن کاملUnderstanding untyped λμμ̃ calculus
We prove the confluence of λμμ̃T and λμμ̃Q, two well-behaved subcalculi of the λμμ̃ calculus, closed under call-by-name and call-by-value reduction, respectively. Moreover, we give the interpretation of λμμ̃T in the category of negated domains, and the interpretation of λμμ̃Q in the Kleisli category. To the best of our knowledge this is the first interpretation of untyped λμμ̃ calculus.
متن کاملCall-by-value, call-by-name and the vectorial behaviour of the algebraic \lambda-calculus
We examine the relationship between the algebraic λ-calculus, a fragment of the differential λ-calculus and the linear-algebraic λ-calculus, a candidate λ-calculus for quantum computation. Both calculi are algebraic: each one is equipped with an additive and a scalarmultiplicative structure, and their set of terms is closed under linear combinations. However, the two languages were built using ...
متن کاملA Semantical and Operational Account of Call-by-Value Solvability
In Plotkin’s call-by-value lambda-calculus, solvable terms are characterized syntactically by means of call-by-name reductions and there is no neat semantical characterization of such terms. Preserving confluence, we extend Plotkin’s original reduction without adding extra syntactical constructors, and we get a call-by-value operational characterization of solvable terms. Moreover, we give a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Funct. Program.
دوره 27 شماره
صفحات -
تاریخ انتشار 2017